
Frege's Concept Horse Problem in the Simply-Typed λ-calculus

David Titarenco (group: Jon Ben & Jose Trujillo)

University of California, Los Angeles

Abstract

In On Function and Concept, G. Frege makes a distinction between concepts and objects. Speci�-

cally, objects are saturated object-expressions while concepts are unsaturated function-expressions.

The goal of this paper is to illuminate what the object-concept distinction entails in the context

of simply-typed lambda calculus (λ→) and whether or not this entailment is succeptible to

problems like the concept horse paradox.

1



I. INTRODUCTION

Frege's On Function and Concept (1892) claims that there is a substantive di�erence

between concepts and objects. This distinction is described on pg. 147:

Statements in general, just like equations or inequalities or expres-

sions in Analysis, can be imagined to be split up into two parts; one

complete in itself, and the other in need of supplementation, or `un-

saturated'. Thus, e.g., we split up the sentence `Caesar conquered

Gaul' into `Caesar' and `conquered Gaul'.

De�nition 1. Complete parts of statements are `saturated' while incomplete ones are `un-

saturated'.

Example 1. Consider the following statement:

`Fido jumped over the fence' (1)

By De�nition 1, we can see that (1) is split up into the saturated `Fido' object-expression

and `jumped over the fence' unsaturated function-expression.

Remark 1. These two categories, as it turns out, have simple analogues in λ→. Unsaturated

function-expressions are terms with functional types, e.g. Nσ→τ or N : σ → τ , while

saturated object-expressions are terms with non-functional types, e.g. Mσ or M : σ.

De�nition 2. We say that if M gets type σ and N gets type σ → τ then the application

NM is legal (as N is considered a function from terms of type σ to terms of type τ) and

gets type τ .

De�nition 3. The set of types of λ→, denoted by Type(λ→) is inductively de�ned as follows.

We write T = Type(λ→) where

α, α′, α′′, . . . ∈ T (type variables);

σ, τ ∈ T ⇒ (σ → τ) ∈ T (function space variables).

De�nition 4. We will now de�ne a new variant of T that more closely models Frege's

natural language notions of concept and object. This new variant, TF , has the following

restrictions:

2



(a) There are three and only three types:


α ∈ TF (objects);

H ∈ TF (truth-values);

(α → H) ∈ TF (concepts).

(b) Objects have an unrestricted domain.

(c) A truth-value is a boolean type where H = {`true', `false'}.

(d) A concept is a functional type that takes an object as an input and returns a truth

value. This mapping is done by some valuation function v where v maps to `true'

if the function-expression applied to the argument(s) is true, e.g., in (1), if Fido did

jump over a fence then v(`Fido') = `true'; otherwise, v maps to `false'.

(e) Note that (H → α) /∈ TF .

Remark 2. Until otherwise noted, we will work only with types in TF .

De�nition 5. Let M be an untyped λ→-term. Given the non-functional type α, we say

that M : α is a saturated object-expression, or simply an object.

De�nition 6. Let N be an untyped λ→-term. Given the functional type α → H, we say

that N : α → H is an unsaturated function-expression, or simply a concept.

De�nition 7. We will now make a semantic distinction between two kinds of uses of the

token `is' in natural language. To illustrate the distinction, consider:

(a) `Mark Twain is Samuel Clemens': here, we have the `is' of identity, or x = x.

The equality operator = is used as a mathematical formalism and may not nec-

essarily be computable in λ→. So, v(`Mark Twain') = `true' i� `Mark Twain' =

`Samuel Clemens'.

(b) `Mark Twain is dead': here, we have the `is' of predication which, if combined with

some property P will yield a functional type of form α → H for some object α. As in

De�nition 4, if α has property P , v(α) = `true'; otherwise, v maps to `false'.

3



II. SIMPLE NATURAL LANGUAGE SENTENCES IN λ→

Theorem 1. Consider the same sentence from Example 1:

`Fido jumped over the fence' (2)

This sentence can be formulated in λ→ like so:

Γ ` J : α → H, Γ ` F : α ⇒ Γ ` (JF ) : H (3)

Proof. We will set the object-expression `Fido' = F and the (one-place) function-expression

`(x) jumped over the fence' = J (x). Note that we will drop the (x) in practice for λ-calculus

w� satis�ability. By De�nition 5, F must be of type α. And to make (JF ) legal, by

De�nition 2, J must be of type α → H. Therefore, a correctly typed (JF ) from J : α → H

and F : α looks like

(JF ) : H (4)

which is precisely what we wanted to show in (3).

Proof. We can also derive a more formally-rigorous proof. Consider:

Γ ` J : α → H Γ ` F : α

Γ ` JF : H
(→e) (5)

where we get the same result: JF is of type H.

Remark 3. Natural language predicates (e.g. `is blue', `jumped over the fence', `is a concept',

`conquered Gaul', `may have stolen my wallet', etc.) are concepts in TF while subjects, be

they proper nouns, improper nouns, pronouns, etc. (e.g. `the car', `Fido', `he', `the tall man',

`the Brooklyn Bridge', etc.) are objects. We will now look at more nontrivial examples of

natural language propositions and attempt to model them in λ→ under TF .

Example 2. Consider the statement:

`The concept horse is a concept.' (6)

Claim 1. We will set the object-expression `The concept horse' = Tch and the (one-place)

function-expression `(x) is a concept' = C. Example 2 is witness to a semantic ambiguity

between natural language and our type system (TF). More speci�cally, (6) evaluates to

4



`true' in natural language, but `false' under TF , i.e. CTch : H has an ambiguous truth-value.

So, if Tch : α is the saturated object-expression `the concept horse' and C : α → H is the

unsaturated function-expression `is a concept', then the mapping v : α → H is ambiguous.

Proof. Consider the following natural language statement:

`The house is a house.' (7)

Trivially, (7) is true. Per De�nition 7, the `is' here seems to be an `is' of identity, so

v(`house') = `true' since `house' = `house'.

Now, let's de�ne a new set of types T∗
F where T∗

F is just like TF except that T∗
F has one

and only one additional type: β ∈T∗
F . We will call all terms of type β houses. Now, we an

ambiguity in (7); it is unclear whether we're asking if the identity `house' = `house' holds or

whether we're asking if the saturated object-expression `the house' is of type β. The former

is true per the �rst half of this proof. The latter is false, as any object-expression is of type

α in TF and, by extension, also in T∗
F and α 6= β. This same kind of ambiguity happens in

(7).

De�nition 8. Given the proof of Claim 1, we will now denote two variations of v, essentially

de�ning two valuations for α → H:

(a) v0 for meta-language predicates;

(b) vL for natural language predicates.

In light of this, we now have two interpretations for statements that involve objects, concepts,

and truth-values. So, in some cases, v0(CTch : H) will evaluate to `false', but vL(CTch : H)

evaluates to `true' or vice-versa. This is known as the concept horse paradox.

Theorem 2. Given any object-expression, O : α and if we let the function-expression `(x)

is a concept' = C, v0(CO : H) will always evaluate to `false'.

Proof. From the proof of Claim 1 and De�nition 8.

Example 3. Now consider the statement:

`Seabiscuit is the concept horse.' (8)

5



Claim 2. We will set the object-expression `Seabiscuit' = S and the (one-place) function-

expression `(x) is the concept horse' = Ch. Example 3 avoids the ambiguity in (6) because

its truth value happens to be false under both valuations, so v0(ChS : H) = vL(ChS : H).

Proof. By Theorem 2, v0(ChS : H), will always evaluate to `false'. In natural language,

`Seabiscuit' is not `the concept horse' (at best, it is an instance of `the concept horse'), so

vL(ChS : H) will evaluate to `false' here as well. Since both valuations return `false', we

avoid the paradox.

Example 4. Consider the statement:

`Anna is something Bill is not � namely, a student.' (9)

Remark 4. Example 4 is not ambiguous as it only uses terms found in natural language.

This is trivial to prove (since the only valid valuation is vL) However, (9) introduces another

problem with TF (more speci�cally, with λ→): subtyping. It seems intuitive that `being

a student' should be a member of `things Bill is not'. As it turns out, λ→ has no way of

representing this.

III. PROPOSED SOLUTIONS

A. Semantic Culling

The most straightforward solution to the semantic problem of the concept horse paradox

is a simple one. Instead of using terms like concept and object, that not only have a meaning

in the meta-language, but also in natural languages, we will use terms that have no meaning

in natural language. Consider a new type system, T ∗∗
F .

The types of T∗∗
F :


α ∈ T∗∗

F (foo);

H ∈ T∗∗
F (baz);

(α → H) ∈ T∗∗
F (foobaz ).

Under such a schema, statements like `The concept horse is [a] foobaz' are meaningless in

natural language, but are semantically well-formed in the meta-language. Thus, we can infer

that we need to valuate the statement with v0 as opposed to vL and avoid any ambiguity.

6



Remark 5. The caveat here is that we lose some expressiveness in natural languages. In

Example 3, we were able to refer both to the semantics of natural language and the

meta-language without ambiguity. This would no longer be possible.

B. Syntactic Sugar

Another proposed solution is syntactic in nature. We previously showed that `Fido

jumped over the fence' (Example 1) can be formulated as follows:

Γ ` J : α → H Γ ` F : α

Γ ` JF : H
(→e) (10)

We will now introduce a new type of λ→-term that will di�erentiate between what valu-

ation v one should use to determine the truth-value of some M : H. To do this, consider a

new type system Tω
F .

The types of Tω
F :



α ∈ Tω
F (objects);

H ∈ Tω
F (truth-values);

(α → ω → H) ∈ Tω
F (unrestricted concepts);

(ω → H) ∈ Tω
F (restricted concepts);

ω ∈ Tω
F (worlds).

A derivation of (10) would now look like the following:

Γ ` J : α → ω → H Γ ` F : α

Γ ` JF : ω → H Γ ` W : ω
(→e)

Γ ` JFW : H
(→e) (11)

The purpose of W is to pick out one (or several, if there are no ambiguities) valuating

function(s). So, in Example 1, W picks out vL, in Example 3, W picks out {vL, v0}, and

in Example 2, W either picks out vL or v0 but not both. A bene�t of W : ω is that it can

pick out the meta-language (v0), meta-meta-language (v1), meta-meta-meta-langauge (v2),

etc. (vn). Furthermore, W can also pick out combinations of languages ({vL, v0, v2, vn}),

provided the truth value stays consistent.

Remark 6. A caveat of this syntactic addition is that W tends to be implicit and thus,

the concept horse paradox merely shifts (now we have an ambiguity of W ) and does not

7



completely disappear. A rather elegant �x is letting W pick out vL by default. In such a

case, the paradox would dissolve and we would still preserve the truth-value in sentences

like Example 3.

8


